KSampleTest¶
-
class
hyppo.ksample.base.
KSampleTest
(compute_distance=None, bias=False, **kwargs)¶ A base class for a k-sample test.
- Parameters
compute_distance (
str
,callable
, orNone
, default:"euclidean"
or"gaussian"
) -- A function that computes the distance among the samples within each data matrix. Valid strings forcompute_distance
are, as defined insklearn.metrics.pairwise_distances
,From scikit-learn: [
"euclidean"
,"cityblock"
,"cosine"
,"l1"
,"l2"
,"manhattan"
] See the documentation forscipy.spatial.distance
for details on these metrics.From scipy.spatial.distance: [
"braycurtis"
,"canberra"
,"chebyshev"
,"correlation"
,"dice"
,"hamming"
,"jaccard"
,"kulsinski"
,"mahalanobis"
,"minkowski"
,"rogerstanimoto"
,"russellrao"
,"seuclidean"
,"sokalmichener"
,"sokalsneath"
,"sqeuclidean"
,"yule"
] See the documentation forscipy.spatial.distance
for details on these metrics.
Alternatively, this function computes the kernel similarity among the samples within each data matrix. Valid strings for
compute_kernel
are, as defined insklearn.metrics.pairwise.pairwise_kernels
,[
"additive_chi2"
,"chi2"
,"linear"
,"poly"
,"polynomial"
,"rbf"
,"laplacian"
,"sigmoid"
,"cosine"
]Note
"rbf"
and"gaussian"
are the same metric.bias (
bool (default
:False)
) -- Whether or not to use the biased or unbiased test statistics. Only applies toDcorr
andHsic
.**kwargs -- Arbitrary keyword arguments for
compute_distkern
.
Methods Summary
|
Calulates the k-sample test statistic. |
|
Calculates the k-sample test statistic and p-value. |
-
abstract
KSampleTest.
statistic
(*args)¶ Calulates the k-sample test statistic.
- Parameters
*args (
ndarray
offloat
) -- Variable length input data matrices. All inputs must have the same number of dimensions. That is, the shapes must be (n, p) and (m, p), ... where n, m, ... are the number of samples and p is the number of dimensions.- Returns
stat (
float
) -- The computed k-Sample statistic.
-
abstract
KSampleTest.
test
(*args, reps=1000, workers=1, random_state=None)¶ Calculates the k-sample test statistic and p-value.
- Parameters
*args (
ndarray
offloat
) -- Variable length input data matrices. All inputs must have the same number of dimensions. That is, the shapes must be (n, p) and (m, p), ... where n, m, ... are the number of samples and p is the number of dimensions.reps (
int
, default:1000
) -- The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value.workers (
int
, default:1
) -- The number of cores to parallelize the p-value computation over. Supply-1
to use all cores available to the Process.
- Returns